
©2015 Tempo Semiconductor, Inc. 1 V_071615

Sample Code for Initializing the
TSCS42xx Family of I2S Codecs

Application Note
TEMPO CONFIDENTIAL

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 2 V_071615

1.0 Purpose
The purpose of this application note is to help the system designer understand how to initialize the
TSCS42xx I2S/I2C based audio codecs. The code listed in this document is written in the C
language and has been proven to work while using a Microchip PIC16F1503, the Hi-Tech C Lite
Compiler, and the Microchip MPLAB X IDE software. Any changes to the processor or compiling
environment may require code changes that are NOT covered by this document.

Note that the code references some I2C routines for the PIC16F1503 that are given at the end of this
document.

This document is NOT intended to provide a complete execution code routine, but merely samples
of code that can be used as a complete embedded program.

Additionally, this document does not represent fully optimized code. System designers should alter
the code as necessary to allow for optimizations for their specific SoC.

Finally – this example code assumes that the speaker dock is designed to support ANALOG INPUT
and either 2 or 4 speakers. If the design uses 2 speakers, then the TSCS42xx will be used and it will
employ an internal loopback register allowing for ADC-to-DAC signal routing internally. If 4
speakers are used, the analog signal will first route to the TSCS42xx . The internal loop-back bit will
NOT be set. Instead, the outputs from the ADC will simultaneously route to the ACS32201 inputs
and the TSCS42xx DAC inputs.

2.0 Initialization of the Codec
The procedure involves programming the equalizer (EQ) and other enhancements (if desired),
setting the gain for the speaker/headphone paths, choosing the input path, setting a loop-back (if
desired), setting clocking structures, powering on various portions of the codec, and enabling the
volume levels.

Here is a short initialization sequence example that can be used for either part. Note, this assumes
that the design will use a single-ended analog input into the IN1 path, and that the analog audio
will be re-directed to the speaker output path.

void init(void);
void i2c_start(void);
void i2c_restart(void);
void I2CWrite(unsigned int Reg, byte Value);
void i2c_stop(void);
void i2c_wait(void);
byte I2CRead(unsigned int Reg, unsigned char ack);

void main(void)
{

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 3 V_071615

 __delay_ms(50); //Delay start of code execution to allow power
settling
 int vol = 255; // Set up global VOLUME variable
 init(); //Initialization of the I2C Setup
 SSP1IF = 0; //CLEAR INTERRUPT for I2C Communication

/****** PROGRAM EQ, COMPRESSOR, LIMITER, ENHANCEMENT SETTINGS HERE
******/

 i2c_start();
 I2CWrite(0x04,0x00); //Mute the Left DAC while making changes
 i2c_restart();
 I2CWrite(0x05,0x00); //Mute the Right DAC while making changes
 i2c_restart();
 I2CWrite(0x13, 0x2a); //Set master mode, 48KHZ
 i2c_restart();
 I2CWrite(0x14, 0x03); //Force ADC and DAC to share only the DAC
clocks
 i2c_restart();
 I2CWrite(0x02, 0x74); //Set Left Channel Speaker amplifier gain to
+3.75dB

 i2c_restart();
 I2CWrite(0x03, 0x74); //Set Right Channel Speaker amplifier gain to
+3.75dB
 i2c_restart();
 I2CWrite(0x1A, 0xfc); //turn on ADC power
 i2c_restart();
 I2CWrite(0x1B, 0x19); //turn on SPK AMP power (If using HP amp on
TSCS42xx , use 0x7F)
 i2c_restart();

 I2CWrite(0x16, 0x00); //unmute ADC
 i2c_restart();
 I2CWrite(0x18, 0x00); //unmute DAC
 i2c_restart();
 I2CWrite(0x69,0x20); //enable analog loopback
 i2c_restart();
 I2CWrite(0x04, VOL); //restore volume to left channel DAC
 i2c_restart();
 I2CWrite(0x05, VOL); //restore volume to right channel DAC
 }

 i2c_stop();
}

The code above should provide analog playback from the IN1 path. Note that some register writes
may not be necessary, depending on the design or overall system goals (such as speaker amplifier
gain, ADC/DAC clock sharing, input selection, etc.). Specifically, registers 02h and 03h for the
speaker gain must be set appropriately.

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 4 V_071615

3.0 Programming the EQ, Compressor, Limiter, and Enhancer Settings
Tempo provides a software programming tool known as ASC (Audio System Configurator) that
allows for tuning of the EQ bands, Compressor, Limiter, and Enhancer settings. For more details on
this tool, please see the relevant app note available on the Tempo Semiconductor website (AN-02
Audio Algorithms).

The ASC tool will provide a C-Code based output for easy integration of code into the design. This
code should be inserted into the main code as indicated above. An example of that code is
provided below. Please DO NOT use the coefficients for the EQ, compressor, limiter, and
enhancements as provided below! Make sure to use coefficients designed and tuned for the target
system!

Note: any changes to the EQ settings should be done with the DAC volume.

 // Program the EQ!!!
 // Actual coefficients calculated from current EQ and Enhancer
configuration
 // 0x0-0x7F = EQ Coefficients
 // 0x80-0xAF = Bass, Treble and 3D Coefficients
 // 0x30-0xCD= multiband compressor

 const long Coeff[206] =
 {
0x003fa018, 0xff80bfcf, 0x003fa018, 0x007f3fc5, 0xffc0bf63, 0x003f870d, 0xff80f1e5, 0x003f870d,
0x007f0d36, 0xffc0f102, 0x003fed27, 0xff804f96, 0x003fc749, 0x007fb06a, 0xffc04b8f, 0x003f9154,
0xff8273f9, 0x003e16e9, 0x007d8c07, 0xffc257c3, 0x003e2595, 0xff909eac, 0x00352995, 0x006f6154,
0xffccb0d6, 0x003edcad, 0xff97e5cc, 0x00395852, 0x00681a34, 0xffc7cb01, 0x00000000, 0x00232768,
0x003fa018, 0xff80bfcf, 0x003fa018, 0x007f3fc5, 0xffc0bf63, 0x003f870d, 0xff80f1e5, 0x003f870d,
0x007f0d36, 0xffc0f102, 0x003fed27, 0xff804f96, 0x003fc749, 0x007fb06a, 0xffc04b8f, 0x003f9154,
0xff8273f9, 0x003e16e9, 0x007d8c07, 0xffc257c3, 0x003e2595, 0xff909eac, 0x00352995, 0x006f6154,
0xffccb0d6, 0x003edcad, 0xff97e5cc, 0x00395852, 0x00681a34, 0xffc7cb01, 0x00000000, 0x00232768,
0x003fe66b, 0xff813e5e, 0x003f20d6, 0x007ec1a2, 0xffc0f8be, 0x0074841f, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x003f144b, 0xff82784c, 0x003e7629, 0x007d87b4, 0xffc2758c, 0x00400000,
0xffa27dfe, 0x002bf93a, 0x005d8202, 0xffd406c6, 0x00400000, 0xffad94df, 0x0027e2de, 0x00526b21,
0xffd81d22, 0x00400000, 0xffb93b7f, 0x00241499, 0x0046c481, 0xffdbeb67, 0x00000000, 0x00400000,
0x003fe66b, 0xff813e5e, 0x003f20d6, 0x007ec1a2, 0xffc0f8be, 0x0074841f, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x003f144b, 0xff82784c, 0x003e7629, 0x007d87b4, 0xffc2758c, 0x00400000,
0xffa27dfe, 0x002bf93a, 0x005d8202, 0xffd406c6, 0x00400000, 0xffad94df, 0x0027e2de, 0x00526b21,
0xffd81d22, 0x00400000, 0xffb93b7f, 0x00241499, 0x0046c481, 0xffdbeb67, 0x00000000, 0x00400000,
0x0000b2b6, 0x00000000, 0xffff4d49, 0x007e8197, 0xffc1656d, 0x0000b2b6, 0x00000000, 0xffff4d49,
0x007e8197, 0xffc1656d, 0x00000000, 0x00000000, 0x000010ce, 0x0000219d, 0x000010ce, 0x007a65c3,
0xffc55703, 0x003dcdc3, 0xff846478, 0x003dcdc3, 0x007b85d5, 0xffc44ec7, 0x00000000, 0x0027dcfd,
0xffb04605, 0x0027dcfd, 0x00468a27, 0xffe71633, 0x0027dcfd, 0xffb04605, 0x0027dcfd, 0x00468a27,
0xffe71633, 0x00000000, 0x00000000, 0x000e718b, 0x001ce317, 0x000e718b, 0xffe811b5, 0x001e281d,
0x00400000, 0xff847a2b, 0x003bb139, 0x007b85d5, 0xffc44ec7, 0x00000000, 0x00000000, 0x00400000,
0xffc55703, 0x003dcdc3, 0xff846478, 0x003dcdc3, 0x007b85d5, 0xffc44ec7, 0x00000000, 0x0027dcfd,
0xffb04605, 0x0027dcfd, 0x00468a27, 0xffe71633, 0x0027dcfd, 0xffb04605, 0x0027dcfd, 0x00468a27,
0xffe71633, 0x00000000, 0x00000000, 0x000e718b, 0x001ce317, 0x000e718b, 0xffe811b5, 0x001e281d,
0x00400000, 0xff847a2b, 0x003bb139, 0x007b85d5, 0xffc44ec7, 0x00000000
 };

 // Mute DAC output while writing EQ coefficients
 i2c_start();
 I2CWrite(0x04,0x00);
 i2c_restart();
 I2CWrite(0x05,0x00);

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 5 V_071615

 i2c_stop();
 byte lowByte;
 byte midByte;
 byte hiByte;
 byte addrByte;
 byte temp;

 for(int i=0; i < 206; i++)
 {
 // Poll to make sure the write logic is available
 do
 {
 temp = I2CRead(0x8a, 0);
 }
 while(temp != 0);

 // 24-bit coefficient is broken up into bytes
 lowByte = (Coeff[i] & 0xff);
 midByte = ((Coeff[i] >> 8) & 0xff);
 hiByte = ((Coeff[i] >> 16) & 0xff);
 addrByte = (byte)i;

 // Write the address followed by the byte coefficients
 i2c_start();
 I2CWrite(0x40, addrByte);
 i2c_restart();
 I2CWrite(0x3a, lowByte);
 i2c_restart();
 I2CWrite(0x3b, midByte);
 i2c_restart();
 I2CWrite(0x3c, hiByte);
 i2c_stop();
 // Hi byte write initiates write sequence
 }

// Program Compressor, program loopback, turn on power, and Restore DAC
gain to
// saved values or full scale

 i2c_start();
 I2CWrite(0x26, 0x02); //Set make up gain
 i2c_restart();
 I2CWrite(0x27, 0xe9); // Compressor Threshold
 i2c_restart();
 I2CWrite(0x28, 0x03); // Compressor Ratio
 i2c_restart();
 I2CWrite(0x29, 0x67); // Compressor Attack Time (Low)
 i2c_restart();
 I2CWrite(0x2a, 0xb1); // Compressor Attack Time (High)
 i2c_restart();
 I2CWrite(0x2b, 0x62); // Compressor Release Time (Low)
 i2c_restart();
 I2CWrite(0x2c, 0xfa); // Compressor Release Time (High)
 i2c_restart();

 I2CWrite(0x2d, 0xf1); // Limiter Threshold
 i2c_restart();

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 6 V_071615

 I2CWrite(0x2e, 0xf1); // Limiter Target
 i2c_restart();

 I2CWrite(0x2f, 0xb3); // Limiter Attack Time (Low)
 i2c_restart();

 I2CWrite(0x30, 0xd8); // Limiter Attack Time (High)
 i2c_restart();

 I2CWrite(0x31, 0x36); // Limiter Release Time (Low)
 i2c_restart();

 I2CWrite(0x32, 0xff); // Limiter Release Time (High)
 i2c_restart();

 I2CWrite(0x33, 0x94); // Expander Threshold
 i2c_restart();

 I2CWrite(0x34, 0x01); // Expander Ratio
 i2c_restart();

 I2CWrite(0x35, 0xb3); // Expander Attack Time (Low)
 i2c_restart();

 I2CWrite(0x36, 0xd8); // Expander Attack Time (High)
 i2c_restart();

 I2CWrite(0x37, 0x9b); // Expander Release Time (Low)
 i2c_restart();

 I2CWrite(0x38, 0xff); // Expander Release Time (High)
 i2c_stop();

Once the enhancements are programmed, they must be enabled or disabled as desired. Each
enhancement has its own enable/disable bit, allowing for flexibility in the system design.

3.1 Enabling the EQ
The Equalizer function of the TSCS42XX is divided into two separate banks of 6 or 12 total EQ
bands. There are 6 bands per channel in each bank. The banks can be configured to be used
simultaneously, or each band can be enabled sequentially. Register 20h controls the EQ
enables. The register is defined as:

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 7 V_071615

To enable all EQ bands in both banks, register 20h must be written a value of EEh. Alternatively,
if only the first two bands of EQ1 and EQ2 are desired, register 20h must be written a value of
AAh.

To disable the EQ, simply write 00h to register 20h.

Note: the EQ is applied simultaneously to the headphone and speaker paths. The TSCS42xx
contains a bit that controls whether or not the headphone detect pin enables or disables the EQ
on the headphone path. For more information, please read Section 4.0.

3.2 Enabling the Compressor/Limiter/Dynamic Range Controller
The Compressor/Limiter/Expander functions are enabled or disabled through register 25h.
Register 25h is defined by:

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 8 V_071615

This register not only contains the enhancement enable/disable bits, but also sets the Detection
Mode and Detection Window for the Compressor/Limiter/Enhancer block. The Detection Mode
and Detection Window bits should be set according to the desired values of the system
designer.

To enable the compressor and limiter, but not the expander, the designer should write 03h to
register 25h.
To enable the compressor and expander but not the limiter, the designer should write 05h to
register 25h.
To disable all compressor/limiter/expander effects, the designer should write 00h to register
25h.

Note: The designer should be aware that the compressor, limiter, and expander effects are
applied simultaneously to the headphone and speaker paths. However, the headphone
detection bit does NOT control these functions. If the designer wishes to have these functions
applied to the speaker path, but not to the headphone path, then the designer must have the
embedded controller detect the headphone presence and shut off the effects by writing 00h to
register 25h. Conversely, the embedded controller must also turn these effects back on when the
headphones are removed.

3.3 Enabling the Bass/Treble/3D Enhancements
The 3D enhancement, Psychoacoustic Bass enhancement, and Psychoacoustic Treble
enhancement features are all enabled/disabled through register 39h. Register 39h is defined by:

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 9 V_071615

To enable or disable the 3D effects, the designer must set or clear bit 4 of register 39h.
To enable or disable the Treble Enhancement, the designer must set or clear BOTH bits 2 and 3
of register 39h.
To enable or disable the Bass Enhancement, the designer must set or clear BOTH bits 0 and 1 of
register 39h.

As an example, to enable the Bass Enhancement and the 3D enhancement, the designer would
write 0x13 to register 39h.

To disable all enhancements, the designer should write 0x00 to register 39h.

Note: As with the compressor/limiter/enhancer block, the designer should be aware that the
3D/Bass/Treble Enhancements are applied simultaneously to the headphone and speaker paths.
However, the headphone detection bit does NOT control these functions. If the designer wishes
to have these functions applied to the speaker path, but not to the headphone path, then the
designer must have the embedded controller detect the headphone presence and shut off the
enhancements by writing 00h to register 39h. Conversely, the embedded controller must also
turn these enhancements back on when the headphones are removed.

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 10 V_071615

4.0 Programming the Headphone Detection Bit and Controlling the EQ
The TSCS42XX features a detection bit that can indicate the presence of a headphone and control
the shutdown/enable of the speaker amplifier portion. Additionally, the EQ1 and EQ2 banks can be
enabled/disabled by this pin. This allows for the EQ to be applied to the speaker path only, or it
allows for separate EQ to be applied to the speaker path and headphone path. For example, EQ1
can be applied to the speaker path while EQ2 becomes applied to the headphone path. These
features are controlled by register 1Ch. Register 1Ch is defined by:

To enable the headphone detection pin, bit 7 must be set to a 1, and bit 6 must reflect the
appropriate desired polarity of the HP_DET signal. The signal can be defined as either active HIGH
or active LOW. Note that the TSCS42xx features an internal pull-up to PVDD on this pin..

As mentioned above, the HP_DET signal can also control the behavior of the EQ1 and EQ2 banks.
This behavior is defined by the status of bits 2:5 of register 1Ch. By default, these bits are set to
00h, and therefore, the EQ will simultaneously be applied to both the headphone path and the
speaker path. By setting the bits appropriately (depending on the switch polarity), the EQ banks
can be individually applied to either the headphone path or the speaker path.

For example: in a system with an TSCS42xx codec and an active low HP_DET signal (low =
headphone), setting register 1Ch to D8h will cause bank EQ1 to be applied to the speakers while
bank EQ2 is applied whenever headphones are sensed.

Note: As mentioned previously, the designer should be aware that the Compressor / Limiter /
Enhancer / 3D / Bass / Treble features are applied simultaneously to the headphone and speaker
paths. However, the headphone detection bit does NOT control these functions. If the designer

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 11 V_071615

wishes to have these functions applied to the speaker path, but not to the headphone path, then the
designer must have the embedded controller detect the headphone presence and shut off the
features appropriately. Conversely, the embedded controller must also turn these features back on
when the headphones are removed.

5.0 Controlling the Volume
In order to control the volume of the TSCS42xxX, it is recommended to use the DAC volume
registers (registers 04h and 05h). The Headphone Volume registers (00h and 01h) and the Speaker
Gain registers (02h and 03h) should be fixed during initialization according to the system design
targets. By default, the headphone volume registers are set to 79h on the TSCS42xx and the
speaker gain registers are set to 6Fh. These default values will yield a 1V RMS output with a 0dBFS
sine wave from the headphone path and 2W RMS into 4-ohm loads with a 0dBFS sine wave on the
speaker path. These registers can be trimmed or adjusted upon initialization.

Again, standard volume control should be handled through the DAC volume registers, which will
affect both the speaker and headphone paths (if available). The DAC volume registers are defined
by:

The DAC volume registers reach maximum volume when set to FFh. For each bit value less than
FFh, the volume will decrease by 0.375dB. For example, setting these registers to FEh will yield -
0.375dB. The exact desired step size for volume increments or decrements can be defined by the

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 12 V_071615

system designer. However Tempo recommends using 1.125dB steps with code similar to the
following (note that VOLUME_DOWN and VOLUME_UP are active low buttons):

 if(VOLUME_DOWN==0){

 if(vol>0){
 vol=vol-3;
 }
 i2c_start();
 I2CWrite(0x04,vol);
 i2c_restart();
 I2CWrite(0x05,vol);
 i2c_stop();
 __delay_ms(10);
 }
 if(VOLUME_UP==0){
 if(vol<255){
 vol=vol+3;
 }
 i2c_start();
 I2CWrite(0x04,vol);
 i2c_restart();
 I2CWrite(0x05,vol);
 i2c_stop();
 __delay_ms(10);
 }

5.1 Setting the Left and Right DAC Volume Simultaneously
The TSCS42xx has a feature that will allow the DAC volume to only be set after both the Left and
Right channel volume registers have been written. This may help avoid any discrepancy in
volume between the left and right channels when changing volume. This feature is controlled
by setting bit 4 of register 0Ah. Register 0Ah is defined by:

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 13 V_071615

By setting the DACVOLU bit high, volume control for both the left and right channel DACs will
only be effective after the right channel volume is written. Therefore, the LEFT channel DAC
volume must always be written first!

It is recommended that the ADCFADE and DACFADE bits remain set high at all times in order to
avoid possible pop noises when making rapid changes in volume. Thus if the system designer
wishes to use the DACVOLU feature, register 0Ah should be set to C4h.

5.2 Muting the Volume
To mute the volume, registers 04h and 05h must be set to 00h

 i2c_start();
 I2CWrite(0x04, 0); //mute the LEFT DAC volume
 i2c_restart();
 I2CWrite(0x05, 0); //mute the RIGHT DAC volume

 i2c_stop();

5.3 Unmuting the Volume
To unmute the volume, the registers 04h and 05h must be restored to their previously known
value. Assuming the designer has created a global variable reflecting the desired system volume
(called “int vol”), the volume can be restored by the following code:

 i2c_start();
 I2CWrite(0x04, vol); //restore the LEFT DAC volume
 i2c_restart();

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 14 V_071615

 I2CWrite(0x05, vol); //restore the RIGHT DAC volume
 i2c_stop();

6.0 Power Savings Mode
The system designer may wish to place the TSCS42xx into a low-power mode when system audio is
not present. This would be desired in a battery-operated system, in order to save battery life.

The lowest power mode for each codec (while maintaining I2C communication) is obtained by
writing the following code sequence:

 i2c_start();
 I2CWrite(0x04, 0x00); //mute the LEFT DAC volume
 i2c_restart();
 I2CWrite(0x05, 0x00); //mute the RIGHT DAC volume
 i2c_restart();
 I2CWrite(0x18, 0x08); //mute the DAC
 i2c_restart();
 I2CWrite(0x16, 0x08); //mute the ADC
 i2c_restart();
 I2CWrite(0x1B, 0x01); //power down the HP and BTL, leave VREF
on.
 i2c_restart();
 I2CWrite(0x1A, 0x00); //power down the ADC, leave master
clock
 i2c_restart();
 __delay_ms(50); //delay by 50ms here.
 I2CWrite(0x1B, 0x00); //kill VREF
 i2c_restart();
 I2CWrite(0x15, 0x3F); //Disable internal pull-downs
 i2c_restart();
 I2CWrite(0x1F, 0x50); //Decrease modulator rates, supply
detect off
 i2c_restart();
 I2CWrite(0x1C, 0x00); //Disable headphone detection bit
 i2c_restart();
 i2c_restart();
 I2CWrite(0x42, 0x00); //Disable ULVO and PWM QT
 i2c_restart();
 I2CWrite(0x71, 0x06); //Disable HP Current Limit

 i2c_stop();
 I2CWrite(0x73, 0x06); //Reduce analog currents

 i2c_stop();
 I2CWrite(0x74, 0x01); //Power down d2a
 i2c_restart();
 I2CWrite(0x1A, 0x01); //kill master clock

 i2c_stop();

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 15 V_071615

6.1 Resuming from Power Savings Mode
Resuming from power savings mode is a simple as backing out the changes made during the
entrance of power savings mode. Note that the TSCS42xx should be powered up PRIOR to
trying to power up the ACS32201 in dual-amplifier systems. Power-up code should resemble
the following:

 i2c_start();
 I2CWrite(0x1A, 0x00); //enable master clock
 i2c_restart();
 I2CWrite(0x74, 0x00); //Enable HP Current Limit

 i2c_stop();
 I2CWrite(0x73, 0x00); //Full analog currents

 i2c_stop();
 I2CWrite(0x71, 0x00); //Power up d2a
 i2c_restart();
 I2CWrite(0x42, 0xD4); //Enable ULVO and PWM QT
 i2c_restart();
 i2c_restart();
 I2CWrite(0x1C, 0xC0);

//Note this register should be restored to desired
system design //value. See section 4.0 for more
details

 i2c_restart();
 I2CWrite(0x1F, 0xA1); //Full modulator rates, supply detect
on.
 i2c_restart();
 I2CWrite(0x15, 0x00); //Enable internal pull-downs
 i2c_restart();
 I2CWrite(0x1B, 0x01); //power up VREF.
 i2c_restart();
 __delay_ms(50); //Delay by 50 ms.
 I2CWrite(0x1A, 0xFC); //power up the ADC, enable master clock
 i2c_restart();
 I2CWrite(0x1B, 0x19); //power up BTL. (If using HP amp on TSCS42xx ,
use 0x7F)
 i2c_restart();
 I2CWrite(0x18, 0x00); //unmute the DAC
 i2c_restart();
 I2CWrite(0x16, 0x00); //unmute the ADC
 i2c_restart();
 I2CWrite(0x04, vol); //restore the LEFT DAC volume
 i2c_restart();
 I2CWrite(0x05, vol); //restore the RIGHT DAC volume

 i2c_stop();

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 16 V_071615

7.0 Sample Rate Considerations
The TSCS42xx is designed to work with 12.288MHz clock inputs and are pre-set in the factory to a
48KHz base rate. The parts will also work satisfactorily with an 11.576MHz input clock, but it may
be desired to change the sample rate to 44.1KHz if this is done.

The sample rates for the DAC and ADC are controlled through registers 17h and 19h. These
registers are defined by:

The sample rate can be changed to suit the system designer’s needs, but it should be noted that
the TSCS42xx is specifically designed to support either 48KHz or 44.1Kz. Other base rates are easily
supported, but may require more significant changes to the internal PLL structures of the codecs.

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 17 V_071615

To change the base rate of the TSCS42xx from 48KHz to 44.1KHz, simply write 0Ah to registers 17h
and 19h..

If the base rate is changed, please note that the desired system base rate must also be entered into
the Audio System Configurator tool in order for the tool to generate the proper EQ coefficients for
the exact base rate being used. Please contact Tempo for more details on this process, or refer to
AN-02 Audio Algorithms.

8.0 I2C Reference Code
This code is provided solely as a reference of working code for a MICROCHIP PC16F1503 in the HI-
TECH C compiler and should be considered REFERENCE only. This code is not warranted,
guaranteed, or optimized in any way.

void init(void){
 PORTA = 0x00; //Clear PORTA register
 LATA = 0x00; //Clear LATA register
 ANSELA = 0x00; //Set PORTA as digital inputs
 TRISA = 0x00; //All port A as outputs
 LATC = 0x00;
 PORTC = 0x00;
 TRISC = 0x3F; //Enable RC0 (I2C CLK) as an input, enable RC1 (I2C DAT)
as an input, //en RC2, RC3, RC4 as inputs.
 ANSELC = 0x00; //Make sure RC0 and RC1 are digital inputs
 SSPCON1 = 0x28; //Enable SSP module and Enable I2C Master mode,
 //clock = FOSC/(4 * (SSPADD + 1))
 SSPCON2 = 0x00; //Clear the SSPCON2 register
 SSPSTAT = 0x80; //Disable slew rate control and Disable SMBUS Compliance
 SSPADD = 0x09; //100Khz @ 4Mhz Fosc
}

void i2c_start(void){
 SEN = 1; //Generate Start Condition
 i2c_wait();
}

void I2CWrite(unsigned int Reg, byte Value){
 SSPBUF = 0xD2; //write the codec address!
 i2c_wait();
 SSPBUF = Reg;
 i2c_wait();
 SSPBUF = Value;
 i2c_wait();
}

void i2c_stop(void){
 PEN = 1; //Generate Stop Condition
 i2c_wait();
}

void i2c_wait(void) {
 while (!SSP1IF);
 SSP1IF = 0;
}

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 18 V_071615

void i2c_restart(void){
 RSEN = 1;
 i2c_wait();
}

byte I2CRead(unsigned int Reg, unsigned char ack){
 byte ReadVal = 0x00;
 i2c_start();
 SSPBUF = 0xD2;
 i2c_wait();
 SSPBUF = Reg;
 i2c_wait();
 i2c_restart();
 SSPBUF = 0xD3;
 i2c_wait();
 RCEN = 1;
 i2c_wait();
 ReadVal = SSPBUF;
 while ((SSPCON2 & 0x1F)| R_nW){};
 if(ack){
 ACKDT=0;
 }
 else{
 ACKDT=1;
 }
 ACKEN = 1;
 i2c_wait();
 i2c_stop();
 return ReadVal;
}

Application Note
Sample Code for Initializing the TSCS42xx Family of Codecs

©2015 Tempo Semiconductor, Inc. 19 V_071615

DISCLAIMER Tempo Semiconductor Inc. (Tempo) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at
Tempo’s sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance
specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed
in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the
suitability of Tempo’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document
is presented only as a guide and does not convey any license under intellectual property rights of Tempo or any third parties. Tempo’s products are not intended for use in life
support systems or similar devices where the failure or malfunction of a Tempo product can be reasonably expected to significantly affect the health or safety of users. Anyone
using a Tempo product in such a manner does so at their own risk, absent an express, written agreement by Tempo. Tempo Semiconductor, Tempo and the Tempo logo are
registered trademarks of Tempo Semiconductor Incorporated. Other trademarks and service marks used herein, including protected names, logos and designs, are the property
of Tempo or their respective third party owners.

DDX™ and the DDX logo are trademarks of Apogee Technology.

	1.0 Purpose
	2.0 Initialization of the Codec
	3.0 Programming the EQ, Compressor, Limiter, and Enhancer Settings
	3.1 Enabling the EQ
	3.2 Enabling the Compressor/Limiter/Dynamic Range Controller
	3.3 Enabling the Bass/Treble/3D Enhancements
	4.0 Programming the Headphone Detection Bit and Controlling the EQ
	5.0 Controlling the Volume
	5.1 Setting the Left and Right DAC Volume Simultaneously
	5.2 Muting the Volume
	5.3 Unmuting the Volume
	6.0 Power Savings Mode
	6.1 Resuming from Power Savings Mode
	7.0 Sample Rate Considerations
	8.0 I2C Reference Code

